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THE RESPONSES OF BALLOON AND FALLING SPHERE 
WIND SENSORS IN TURBULENT FLOWS 

SUMMARY 

The responses of balloon and falling sphere wind sensors in turbulent and random 
flows are analyzed in this report. The basic equations of motion appropriate for a sensor 
influenced by drag and buoyant forces are linearized by perturbing an equilibrium uniform 
motion of a sensor with turbulent or random wind fluctuations. The wind environment 
and sensor velocities are decomposed with stochastic Fourier-Stieltjes integrals. Substitution 
of these representations into the linearized equations of motion yields the response of the 
wind sensor. The response functions in turn yield the transfer functions of the sensor and 
the phase angles of the Fourier components of the balloon motion. The transfer functions 
and phase angles are functions of the wind perturbation frequency o and contain two 
parameters T and a which are functions of sensor mass, apparent mass of the sensor, 
the mass of air displaced by the sensor, the ascent or descent rate of the sensor as the case 
may be, and the acceleration of gravity. The quantity T is a time constant of the system 
and a is the ratio of the apparent mass to the sum of the apparent mass and the mass of the 
system. Once these quantities are specified, the response properties of the sensor are com
pletely specified in a linear context. In general the system becomes more responsive as T 
and a approach zero and unity respectively. 

As o T  + 0, the transfer functions and phase angles approach unity and zero, 
respectively; so that at sufficiently low frequencies, the sensor essentially measures 100 
percent of the turbulent Fourier amplitudes with no phase shifts. As o T  + QO, the 
transfer functions and phase angles approach a2 and zero, respectively; so that at 
sufficiently large frequencies, the sensor is capable of detecting a percentage (equal to 100a) 
of the turbulent Fourier amplitudes, again with no phase shifts. If apparent mass effects 
were not present (a  = 0), the sensor transfer functions would approach zero as U T  + QO. 

Thus, the apparent mass effects make the sensor more responsive. At oT= u-”~ for the 
horizontal fluctuations and U T  = 2 u - ” ~  for the vertical velocity fluctuations, the phase 
angles of the sensor Fourier amplitudes take on minimum values. In general the transfer 
functions associated with the horizontal sensor motions are smaller than the transfer 
function associated with the vertical sensor motions in the domain 0 < o T  < QO) and thus 
the sensor is more responsive to vertical air motions than to horizontal air motions. 

The results of the analysis are used to analyze the response properties of the 
Jimsphere balloon wind sensor and the effects that balloon motions would have on 
turbulence spectra if they were calculated with balloon and falling sphere wind data. The 
Kolmogorov inertial subrange and the Lumley subrange in nearly inertial isotropic turbu
lence in stably stratified fluids are used as specific examples in the calculations. 
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INTRODUCTION 

The subject of this paper is the responses of balloons and falling sphere wind sensors 
to the wind environment. I t  has been suggested in various quarters of the meteorological 
and aerospace communities that it might be possible to detect clear air turbulence and 
gravity wave phenomena with these devices, which include the Jimsphere spherical balloon 
[ 13 ,the ROSE balloon [21 ,and the ROBIN falling sphere [31 . To determine the capabili
ties of such devices with respect to measuring small vertical scale wind fluctuations, it is 
necessary to first determine their response properties. The responses of ballons and falling 
sphere wind sensors have been the subject of a number of investigations during the last 
decade [4-71. However, these investigations have been concerned with the responses of 
these wind sensors to vertical variations of the horizontal wind. It now appears that it might 
be possible to detect vertical velocity fluctuations with these devices, at least with the 
Jimsphere [8 ] .  Accordingly, the subject of this analysis is the responses of these devices 
to vertical variations of both the horizontal and vertical components of the wind as they 
traverse the wind field. The analysis will be based on linear perturbation theory, whereby 
the wind field is assumed to be composed of a constant basic state mean flow with a 
superimposed perturbation. Similarly, it is assumed that the associated velocity components 
of the wind sensor can also be represented in terms of a mean state and a superimposed 
perturbation. The perturbations are assumed to  be sufficiently small, so that nonlinear 
terms in perturbation quantities can be neglected in comparison to first-order terms. This 
hypothesis results in a set of three linearized momentum conservation equations that 
govern the velocity perturbations of the sensor. The subsequent analyses of the response 
properties of the wind sensors are based on these equations. The Jimsphere is analyzed in 
detail as an example. 

BASIC EQUATIONS 

The basic equations of motion that govem the behavior of a wind sensor are given 

+ +  
m du = 1p C D A  IVe-VI (ue -u )+m -d (u,-u) ,

dt  2 a d t  

and 
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+ +  
m- dw = 1p CDA IVe-VI ( w e - w ) + m  -d (we- w)-(m-mo)g , (3)

dt  2 a d t  

where m, ma, A, and CD denote the mass, apparent mass, cross-sectional area, and drag 
coefficient of the sensor, respectively; mo is the mass of air displaced by the sensor; g is 
the acceleration of gravity; p is the density of the atmosphere; and t is time. The zonal, 
meridional, and vertical components of velocity of the sensor are u, v, and w, respectively; 
and the subscript e denotes the environmental wind components. The first term on the 
right side of each equation represents the associated component of the drag force. The 
drag force is assumed to act parallel and opposite to the direction of the wind vector 

+ +  
* relative to the sensor, Ve - V, where 

+ + + + 

V = u i  + v j  + w k  Y (4) 


--fT,;, and k being zonal, meridional, and vertical unit vectors, respectively. The second 
term on the right side of equations (1) through (3) represents the effects of the sensor 
apparent mass [4 ] .  The third term on the right side of equation (3) denotes the buoyant 
force. 

The aerodynamic lift forces have been neglected in these equations. The effects of 
these forces on the sensor motion will be considered in a later report. 

FIRST-0RDER LINEAR PERTURBATION EQUATIONS 

The environmental wind is assumed to be composed of a constant basic horizontal 
flow with superimposed velocity fluctuations, so that 

-
ue = ue + Uk(t )  

-
ve = ve+vL(t) 9 

we = W p )  
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- -  

- -  

where the overbars and primes denote the basic state and fluctuating parts of the wind. I t  
is assumed that the velocity components of the sensor can also be partitioned into two 
parts, as was the environmental wind, so that 

u = ii+ u'(t) i 
v = v +v'(t) 1 

-
w = w + w'(t) 1 

The overbarred quantities represent a mean motion of the sensor, and the primed quantities 
denote the departures from the mean motion. It is now assumed that the basic-state 
quantities in equations ( 5 )  and (6) satisfy equations (1) through (3), and thus it is 
concluded that 

u = ue 7 (7) 

v = ve 3 

- _
-
2 
1 A p C D I w l w  = (mo-m)g (9) 

These equations govern the mean motion of the sensor. Equations (7) and (8) state that 
the sensor follows the mean horizontal motion of the environment. This results because 
the horizontal basic-state accelerations of the sensor and the environment vanish. Equation 
(9) states that the vertical drag force balances the Archimedean and gravitational body 
forces. The quantity w is the mean ascent or descent rate of the sensor. If mo > my 
then w> 0, which corresponds to an ascending sensor; and if mo < m, then w< 0, 
which corresponds to a descending sensor. An example of the former is the Jimsphere 
spherical balloon [ I ] ,  while an example of the latter is the ROBIN falling sphere [ 3 ] .  

Substitution of equation ( 5 )  and equation (6) into equations ( I )  through (3) and 
utilization of equations'(7) and (8) yield the equations that govern the perturbations 
(prime quantities) of the sensor about the unperturbed state, so that 
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1 I2 

m-du' = 1p CD A [ ( ~ k- u ' ) ~+ (vk - v ' ) ~+ (wk -4- wr)z] (ut  - u')dt  2 

+ m a  5 ( u p )  , 

1I2-
m- dv' -

2 
1 p CD A [(uk - u ' ) ~+ (vk - v ' ) ~+ (wk - w - w ' ) ~] (vk - v')d t  

+ m -d (vk - v') , 
a d t  

These equations can be simplified by assuming that the fluctuations of the environmental 
wind and the sensor components of velocity are infinitesimally small, so that products of 
perturbation quantities can be neglected in comparison to first-order quantities. Thus, for 
infinitesimal perturbations one has 

-
m ~~ du' -- -1 p C D A  lwl ( u t - u ' ) + m  -d (uk-ut) 

7dt 2 a d t  

where equation (9) has been used in deriving equation (15). These equations state that 
the fluctuations u', v', and w' are the result of fluctuations in the drag force and the 
apparent mass terms. The effects resulting from the Archimedean and gravitational body 
forces are concentrated in the mean motion of the sensor [equation (9)]. Equations (13) 
and (14) are identical in form. This means that the zonal and meridional balloon responses 
are proportional to each other. 
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It  should be noted that the environmental velocity fluctuations are being treated as 
functions of time. Actually the wind field is a function-of space and time. As the sensor 
passes through the wind field, it respond's to both the temporal and spatial variations of the 
wind field. Thus, the sensor yields neither a Lagrangian nor a Eulerian measurement. I t  
shall be assumed that the time scale of the atmospheric motions are sufficiently large com
pared to the time it takes for the sensor to traverse a particular atmospheric layer, so that 
the temporal variations of the wind field can be neglected. In addition, it will be assumed 
that the horizontal variations of the atmospheric wind field are sufficiently large, so that the 
sensor is essentially responding to vertical variations of the wind field. Thus, in essence, 
the wind perturbations are assumed to be functions of z only. Now, the explicit time 
dependence of the wind perturbations indicated in equation ( 5 )  is with respect to the 
sensor, and results because the sensor is ascending through the wind field. To show that this 
is valid in a linear context, it is noted that the height coordinate z can be transformed to 
a time coordinate with 

0 

Now, w'(t) is a fluctuating quantity, and the negative and positive contributions to the 
above integral would tend to cancel each other. This means that this integral will fluctuate 
in sign and, more importantly, will remain small. Now, 

U&Z) = u;[ (1+ A)it] , 
w t  

where I' denotes the integral in equation (16). Upon expanding uk in a Maclaurin series 
about I'/& = 0, the following is found: 

uk(z) = Uk(Gt) + (%) - 1 '+  . . . .  
z = wt 

The lead term in this expansion is a linear quantity, and the remaining terms are of second 
and higher order of smallness; therefore to be within'first order, one has 

-
Uk(Z) = uk(wt) , 

6 




which proves that the environmental wind perturbations can be transformed into explicit 
functions of time by replacing z with wt in the linear problem where w is now assumed 
to  be a known quantity. The transformation is not so simple in the nonlinear problem, 
because the balloon vertical velocity fluctuation w’ is contained in the forcing function 
through the integral 1’. 

FOURIER DECOMPOSITION 

Suppose that u;, v;, and W; are random functions of time, so that u, v, and w 
are also random functions of time. Random functions are neither periodic nor integrable, 
therefore neither Fourier series nor integrals may be used in the ordinary sense. Neverthe
less, under a set of weak assumptions, a Fourier representation does exist. According to 
Lumley and Panofsky [9], the theorem states that the random functions u’(t), v’(t), and 
w’(t) can be expanded in terms of the random functions Zu(o),  Zv(w), and Zw(w), so 
that 

m 

W 

v’(t) = dZv(w) , 
-00 


and 
W 
P 

w’(t) = J eiwt dZw(o)  . 

Similarly, the environmental wind fluctuation components uk(t), vk(t), and wk(t) can be 
expanded in terms of the random functions Z (a), (a),and Z we

(w ) ,  so thatZ ue ve 

u;<t> = 1 eiwtdZ (a) 9 ue 
-m 

W 
P 

Vk(t) = J eiwt dZve(w) , 
-03 


and 
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Wk(t) = eiwtdZ (0) . 
we 

-00 

The Fourier amplitude dZu(o) is a complex function of o and is given by 

Similar expressions can be written for the remaining random functions. Equation (26) is a 
Stochastic Fourier-Stieltjes integral. (See Reference 10 for an example.) 

The equations that govern the Fourier amplitudes can be obtained by substituting 
equations (20) through (25) into equations (1 3)  through (1 5 )  and noting that the functions 
eia constitute a complete orthogonal function set, so that 

(1 + i o T ) d Z U ( a )  = (1 + i a o T ) d Z  (a) , (27)ue 

(1 + iwT)dZv(a )  = (1 + iawT)dZ (0) , (28)ve 

and 

(2+ iwT)dZw(o)  = ( 2 + i a a T ) d Z  (w)  ,
we 

where 

(m + ma)Gi
T =  

Imo - ml g 

and 

maa =  

m + m a  

8 




Division of equations (27) and (28) by 1 + iwT and equation (29) by 2 + i o T  yields the 
Fourier amplitudes of the sensor motion, so that 

dZu(o ) = 	 1 + i a o T  dZue(w) 7 (32)1 + i o T  

dZv(w ) = + iawT dZve(w) 7 (33)1 + i o T  

and 

dZw(w) = 	 2 + i a w T  dZwe(w) (34)2 + i o T  

Equations (32) through (34) give the Fourier amplitudes of the sensor velocity fluctuations 
as functions of a,a ,  T and the Fourier amplitudes of the environmental wind fluctuations. 

TRANSFER FUNCTIONS AND PHASE RELATIONSHIPS 

The coefficients of dZ (a),dZ
'e 
(o),and dZ ( w )  in equations (32) through

ue we 
(34) are the system response functions and contain the phase and amplitude information 
of the sensor velocity fluctuations relative to the environmental wind fluctuations. The 
amplitude information can be obtained by multiplying each expression by its complex 
conjugate and then taking an ensemble average. For the zonal fluctuations, one has 

where <> denotes an ensemble average and ( )* denotes complex conjugation. The
* 

quantity <dZu(o)  dZu(w)> is the contribution to the variance of u' for frequencies 
between w and w + dw, so that 
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where @(a) is the spectrum of u'. Similar statements can be made about the remaining 
random functions. The following relationships between the various spectra follow from 
equations (32) through (34): 

(37) 
, 

and 

- 4'+ (awT)' 
(Pwe(o) 4 +(UT)' 

The quantities on the right side of these equations are the system transfer functions. As 
UT +. 0, the ratios between the sensor velocity spectra and the environmental spectra 
approach unity, so that the magnitudes of the Fourier amplitudes of the sensor approach 
the magnitudes of the Fourier amplitudes of the environmental wind fluctuations. As 
UT + 00, the ratios of equations (37) and (38) approach a 2 .  If the apparent mass terms 
were not present in equations (1 3) through (1S ) ,  the system transfer functions would 
approach zero as o T  + 00. Thus, the presence of the derivatives of the environmental 
wind fluctuations via the apparent mass terms result in the sensor being more responsive 
to the environment. I t  should be noted that G U ( a ) / @  (a)< @w(o)/@(a)for w # 0. 

ue we 
This means that the sensor filters the horizontal environmental velocity fluctuations more 
than the vertical environmental velocity fluctuations, or, in other words, the sensor is more 
responsive to the vertical wind than to the horizontal wind. 

The phase angles 6 by which the sensor velocity Fourier amplitudes lag behind the 
environmental Fourier amplitudes can be obtained by calculating the arctangent functions 
of the ratios of the imaginary and real parts of the system response functions. Thus, 

- (a - 1) UT6, - 6, = tan-' 
1 + a (UT)' 1 ,  (39) 

and 

-6, = tan-' 2 ( ~1) U T  
4 + a  (aTYI 
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The phase angles are negative because a - 1 < 0. As U T  + 0 and U T  + m, the arguments 
of the arctangent functions approach zero, and thus the phase angles approach zero. This 
means that at both sufficiently small and large frequencies, the sensor and environmental 
Fourier components are in phase. It follows that the phase angles experience minima at 
finite values of UT. Upon differentiating equations (39) and (40) with respect to U T  
and setting the resulting relationships equal to zero, one finds that 6, and 6, experience 
minima at 

Thus, the minimum phase angle of the horizontal sensor velocity fluctuations occurs at one-
half the frequency at which the vertical sensor velocity fluctuations have their minimum 
phase angle. If the apparent mass effects were not present (a  = 0), the minimum phase 
angles would all equal 90 deg, and they would occur at infinitely large frequencies. Sub
stitution of equation (41) into equations (39) and (40) will show that minimum phase 
angles of the horizontal and vertical sensor velocity fluctuations are equal and are given 
by 

Thus, the minimum phase angles are functions of a only. 

JIMSPHERE RESPONSE 

It is instructive to consider a specific example in studies of this nature. In this 
section the transfer functions and phase angles associated with the Jimsphere wind sensor 
for standard atmospheric conditions will be calculated. The Jimsphere wind sensor is a 
spherical, 2-m diameter, 0.5-mil, metalized Mylar balloon, fabricated from 12 tailored 
gores. It has 398 protrusions (cones) approximately 0.08 m high. This sensor is a super-
pressurized device with two valves 180 deg apart to vent helium and thus maintain a super-
pressure approximately equal to 7 mb. This system has a ballast of 0.1 kg to reduce spurious 
motions, and the complete system, excluding the inflation gas, has a mass approximately 
equal to 0.408 kg. 
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According to Eckstrom [5] ,the apparent mass ma is related to the displaced air 
mo through the relationship 

ma = km,  (431 

where k is a dimensionless, experimentally determined parameter. Eckstrom's experimental 
values for the Jimsphere ranged between 0.46 and 0.58 with an average or characteristic 
value equal to 0.5 1. 

The total mass of the system is 

m = mg + m s  (44) 

where mg and ms denote the mass of the inflation gas (helium) and the mass of the 
Jimsphere. The quantity ms equals 0.408 kg. The mass of the gas mg can be calculated 
by assuming that the balloon is in thermal equilibrium with the environment and the excess 
pressure of the gas within the balloon (approximately 7 mb) with respect to the environ
ment is negligible. Calculations by DeMandel and Krivo [81 show that departures from 
thermal equilibrium by as much as 10°C andthe balloon overpressure produce only a 
1.5-percent variation in the balloon rise rate w, so that the above assumptions appear 
reasonable. Thus, utilizing the ideal gas law, one has 

M3 = g = 4.0026 gm mole-' 
~~ 

mO M O  28.9644 gm mole-' Y (451 

where Mg and Mo denote the molecular weights of the sensor gas (helium) and the 
atmosphere. The radius of the Jimsphere is 1 m, and thus the mass of the displaced air is 

- 4mo - -
3 aP (46) 

Substitution of equations (43) through (46) into the expressions for a and T given by 
equations (30) and (3 1) yields 
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and 

ka =  
k + g + - msM 

M O  4TP 

Figure 1 gives T and a as functions of altitude calculated with equations (47) and (48). 
The computations of these curves were based on standard atmosphere values of p ,  the 
typical rise rates k of the Jimsphere balloon as determined by DeMandel and Krivo [81 , 
and the above mentioned values for the remaining parameters. A typical rise rate of the 
Jimsphere in the troposphere is 5 m sec-' . It is clear from Figure 1 that T is approximately 
equal to 0.5 sec in the first 8 km of the atmosphere. Above the 8-km level T increases 
rapidly. The quantity a is a monotonically decreasing function of altitude. The quantities 
a and T are clearly functions of altitude and depend on time through the transformation 

0.8 I I I I I I I I 1 6 

T 

0.7 _-5 

0.6_ _  4 

_ _a 0.5 3 T (secl 

0.4 _ _  2 

_ _0.3 I 

0.2 I I I 	 I I I I I I 0I I I I 

0 2 4 6 8 10 12 14 16 18 20 

Figure 1. The quantities T and a as functions of altitude. 
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z = i t .  Thus, in the strictest sense, the perturbation equations (13) through (15) that 
govern the motion of the sensor are incorrect, beeuse they were derived by assuming 
constant values for the balloon parameters (CD, w, etc.) and atmospheric density which 
means a and T were assumed to be constant. Nevertheless, it appears reasonable, as a 
first approximation, to apply the transfer functions and phase angle relationships locally 
at particular altitudes. The assumption here is that a and T do not vary appreciably over 
thin atmospheric layers with thicknesses that are large compared to the wavelengths of the 
atmospheric motions of concem. Past studies appear to show that the sensor velocity 
perturbations with wavelengths less than approximately 100 m are the ones that depart 
appreciably from the associated atmospheric perturbations [7 J . The departure becomes 
more pronounced as the wavelength of the atmospheric perturbations becomes small. The 
quantities a and T have less than 10-percent vertical variation over a 1-km thick layer 
below approximately the 18-km and 13-km levels, respectively. Above the 13-km level, T 
has much larger vertical variation over a 1-km layer. Thus, for example, the quantity T 
has approximately a 30-percent vertical variation over a 1-km layer centered at the 17-km 
level. If 10-percent variations in a and T over a 1-km layer are accepted to be negligibly 
small, then it would appear that the analysis in this report could be applied over 1-km thick 
layers below the 13-km level, because the wavelengths of interest are less than or equal to 
approximately 10 percent of the layer thickness (1 km). Application of the analysis above 
the 13-km level will only lead to very approximate results. Nevertheless, the theory could be 
applied to levels above the 13-km level to obtain qualitative results. 

Figures 2 through 5 are plots of the system transfer functions and the phase angles 
for a = 0.7, 0.6, 0.5, and 0.4. For the Jimsphere balloon, these values of a occur at 
approximately the surface and at the 8.5-, 13-, and 16.5-km levels, respectively. The 
figures show that as a decreases or as height increases, the magnitude of the minimum 
phase angles increases. The minima occur at U T  = a-112 and 2 a-1'2 for the horizontal 
and vertical wind perturbations, respectively [equation (41)l. As a decreases or as height 
increases, the locations of the minima shift toward larger values of UT. However T 
increases faster than all2 decreases with height (Fig. l ) ,  and thus, the minima actually 
shift toward smaller values of w as height increases. This is clearly shown in Figure 6, a 
plot of the frequencies wmin, u, v, w, at which the minimum phase angles occur as functions 
of altitude for the horizontal and vertical velocity perturbations of the Jimsphere. The 
wavelengths at which these minima occur are related to the rise rate through the expression, 

- 2lTw 
'min 	 - ~ 

(49)
min 

-
Thus, for example, in the troposphere (z 5 10 km) w _N 5 msec-' , a m i n ,  -- 4.4 rad sec-' , 

-
and wmin, - "in, = 2.2 rad sec-I . Substitution of these numbers into equation (49) 

-yields the corresponding wavelengths Amin, N 7 m and Amin, - Amin, 2 14 m. 
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Figure 2. System transfer functions and phase angles 
as functions of UT for a = 0.7. 
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as functions of oT for a = 0.5. 

Figure 5.  System transfer functions and phase angles 
as functions of U T  for a = 0.4. 
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wind sensor as functions of altitude. 

I t  is clear from Figures 2 through 5 that the transfer functions approach az as 
U T  + m. In fact, the response functions essentially assume constant values at UT = 2n, 
especially for the horizontal velocity fluctuations. 

The transfer functions are increasing functions of a and decreasing functions 
of T. In view of the fact that the quantities a and T are monotonically decreasing and 
increasing functions of height, respectively, it follows that the transfer functions are 
decreasing functions of height for any particular value of w . In short, the Jimsphere becomes 
less responsive as height increases. An examination of Figures 2 through 5 will show that 
this is indeed the case. 

POWER SPECTRA 

As the wind sensor ascends or descends through the atmosphere, it will be carried 
with the horizontal mean wind. This means the sensor is probing the atmosphere vertically 
relative to a coordinate system moving with the mean wind. Thus, the environmental 
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vertical velocity spectrum of the wind fluctuations along the sensor track relative to the 
environmental mean flow is a longitudinal spectrum. Similarly, the zonal and meridional 
velocity spectra of the wind fluctuations along the sensor track relative to the mean 
environmental flow are lateral spectra. These statements are true only if the mean wind is 
independent of height. In the analysis that follows, it is assumed that environmental fluctua
tions are isotropic. According to Batchelor [ IO], the longitudinal and lateral spectra in 
wave number space are related through the equation, 

( K ) - K  
a K  1 , 

where @ ( K )  and @ 
'e 

( K )  denote the longitudinal and lateral spectra of the wind 
we 

fluctuations along the balloon track relative to the mean environmental flow and K is a 
vertical wave number (271/h, h being a wavelength). One can convert wave number 
spectra to frequency spectra with a Jacobian transformation and Taylor's hypothesis which 
states that 

-

W = KW 

The Jacobian transformation is energy perserving and states that 

( 5 2 )  

where @I and CP denote frequency and wave number spectra. Substitution of equation ( 5  1) 
into equation ( 5 2 )  yields the result 

Substitution of this result into equation ( 5 0 )  yields 

a W  
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=In the case of isotropic turbulence 4 
~e 'Ve 

, so that all comments that follow relative to 

'Ue 
are equally valid for @

"e 
. 

Many types of random wind phenomena have spectra that behave as does 

(K) = P K p  (55)
we 

where p is a constant and depends on the intensity of the phenomena. In the case of 
isotropic turbulence associated with the inertial subrange, p = -5/3 and 

where E is the viscous dissipation and al is a universal constant with numerical value 
approximately equal to 1.4 [ 11] . In the case of nearly inertial isotropic turbulence with 
sufficiently small wave numbers in a stably stratified fluid, p = -3 and 

where C is a universal constant, g is the acceleration of gravity, To is the temperature of 
an adiabatic atmosphere, and s denotes the local mean flow potential temperature [ 121. 

Combining equations (5l), (53), (54), and (55)yields 

and 
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where multiplication of the spectra with Tp k '+p p-' results in the nondimensional 
quantity $(UT). Multiplication of equations (58) and (59) by the transfer functions (37) 
and (38) yields the nondimensional velocity spectra of the sensor; namely, 

and 

In the case of the inertial subrange, one has 

and 

For nearly inertial isotropic turbulence in a stably stratified fluid, one has 

and 

' I 
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As o T  + m, the asymptotic behavior is obtained 

9,- I-p a2(oT)P
2 

and 

Thus, at sufficiently large values of UT, the system transfer functions merely have the 
effect of reducing the input environmental velocity spectra by a factor a2 to produce the 
sensor velocity spectra. This result is a consequence of the apparent mass terms in the 
equations of motion. If the apparent mass terms were not present in the equations, then 

9 and 9, would approach zero as does (oT)P-~  as U T  becomes large (p < 0). As 
U T  --f 00, the asymptotic behavior is obtained, 

and 

Thus, for sufficiently small values of UT, the system transfer functions have no effect on 
the input Fourier amplitudes, and the sensor can thus sense virtually 100 percent of the 
spectral energy. 

Figures 7 and 8 contain plots of the input and output nondimensional velocity 
spectra for turbulence in the inertial subrange and nearly inertial isotropic tubulence in 
stably stratified air folt u = 0.5. This value of a occurs at the 13-km level for the Jimsphere 
balloon (Fig. 1). This region of the atmosphere is notoriously well known for relatively 
high rates of occurrence of clear air turbulence. 

At 13 km, T = 1.O sec and w _N 5 m sec-' ,so that oT = 0.63 corresponds to 
h = 50 m. This wavelength corresponds to the absolute lower limit on the wavelengths of 
the Fourier components which are not smoothed out by currently available wind profile 
data reduction procedures [71. At wT = 0.63, the system detects 93 percent and 78 
percent of the vertical and horizontal wind spectral energies (Fig. 4). However, Figures 7 
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Figure 7. Input and output nondimensional velocity spectra for 

turbulence in the Kolmogorov inertial subrange as 


functionsof oT for a =  0.5. 
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Figure 8. Input and output nondimensional velocity spectra for 
turbulence in the Lumley subrange as functions of 

UT for a = 0.5. 
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and 8 show that there are relatively large amounts of power in the vertical and horizontal 
sensor spectra at values of UT> 0.63, especially for the vertical spectra. For example, 
at U T  = 3 (A _N 10 m), the sensor vertical velocity spectrum is equal to 48 percent of the 
corresponding environmental spectrum. To retrieve this information, new and more 
powerful data reduction procedures of radar wind sensor tracks must be developed. 

Figures 7 and 8 clearly show the asymptotic behaviors given by equations (66) 
through (69) for large and small values of UT. In the region 0.7 UT < 6, the system 
transfer functions produce output spectra with slopes that are smaller than the input 
spectra. Thus, in Figure 7 the environmental and balloon spectra have -5/3and -5/2 slopes, 
and in Figure 8 the corresponding slopes are -3 and -4 in the domain 0.7 < U T  < 6. Thus, 
if wind profile data are to  be analyzed with a view toward detecting clear air turbulence or 
short wavelength gravity waves in the region o T  2 1, then careful attention must be paid 
to the response properties of the sensor. 

CONCLUDING COMMENTS 

The response properties of balloon and falling sphere wind sensors in random and 
turbulent flows have been analyzed. The analysis was based on linearized equations of 
motion of a wind sensor subject to drag and buoyancy forces. Apparent mass effects have 
been included, and aerodynamic lift forces have been excluded. It is well known that 
smooth balloon and falling sphere wind sensors execute lateral self-induced motions 
resulting from aerodynamic lift forces. The nature of these lateral motions is characterized 
by the Reynolds number, 

Re = ~ 

Iwl D 
7 

V 


where D is the diameter of the sensor and v is the coefficient of kinematic viscosity of 
air. At subcritical Reynolds numbers, for example Re < 2.5 X 1O5, smooth spherical 
wind sensors execute an orderly spiral motion with the vertical wavelength equal to 
approximately 12 sensor diameters. These motions constitute a very narrow band process, 
and for all practical purposes, the spectra of the self-induced motions can be represented 
with Dirac delta functions. At supercritical Reynolds numbers, Re > 2.5 X l o 5 ,  the self-
induced lateral sensor motions resulting from the unstable wake are erratic in nature and 
occur over a band of frequencies that is broader than the subcritical one. Scoggins [ 11 
finds that the addition of approximately 400 conical roughness elements and a point mass 
of 100 gm to a smooth 2-m diameter balloon essentially eliminates the erratic character of 
the self-induced sensor motion at supercritical Reynolds numbers, and causes the balloon 
to execute an orderly narrow band spiral motion or oscillation at both subcritical and 
supercritical Reynolds numbers with vertical wavelength equal to approximately 24 m. 
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It  is clear that the analysis in this report is not valid at those frequencies where aerodynamic 
lift forces are important. Thus, for example, in the case of the Jimsphere balloon, the 
analysis herein fails at and in a small neighborhood of frequencies about o = 1.3 rad sec-' 
(A = 24 m and 6= 5 m sec-' ) for both subcritical and supercritical Reynolds numbers. 
The effects of aerodynamic lift forces on balloon and spherical wind sensors will be con
sidered in a later report. 

In the analysis, the effects of radar response in the detection of winds with balloons 
and falling spheres have also been neglected. DeMandei [ 131 finds that radar errors in wind 
estimates made with the Jimsphere are concentrated in the horizontal and vertical velocity 
Fourier components with wavelengths smaller than approximately 100 m and 200 m, 
respectively. He also points out that the Fourier components of the radar errors and the 
wind at these wavelengths are of the same order of magnitude. These effects are indeed 
important, but are not within the scope of the present report. Nevertheless, the problem 
of determining the joint response of wind sensors and the tracking radar should be examined 
in the future. 

George C .  Marshall Space Fiight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama, September 2, 1970 
126-61-10-00-62 
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